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We present a method for the rigorous analysis of wave fields excited in an elastic half- 
space containing a horizontal elastic cylindrical inclusion by a distributed harmonic surface 
load. For simplicity we illustrate the application of the method by investigating a model 
problem of antiplane oscillations of the composite elastic medium. We derive asymptotic 
representations of the solutions when the inclusion is rigidly bonded, which permit a rather 
simple analysis of the wave field in the medium. The proposed method can be applied without 
changes to similar problems in two and three dimensions. In doing this only the awkwardness 
of the derived relations is increased significantly. 

1. We consider steady-state antiplane oscillations of an elastic half-space X>~0 with 
a density p and a shear modulus ~, containing an elastic cylindrical inclusion with a shear 
modulus DI and a density Pl in the region R = /(X -- h) = + YZ-~a (a < h). The inclusion is 
rigidly bonded to the half-space. Shear oscillations are oriented along the generatrix of 
the cylinder (parallel to the Z axis). The motion of the medium is described by the elasti- 
city theory dynamical equations in displacements (the Lam~ equations), which for antiplane 
oscillations have the form [I] ~AW(X, Y, t) = p~2W(X, Y, t)/~t 2, where W(X, Y, t) is the dis- 
placement of a point of the medium along the Z axis, and A = ~2/~X2 + ~2/~y2 is the Laplacian 
operator. 

We seek the solution of the latter equation for steady-state oscillations in the form 
W(X, Y, t) = w(x, y) exp (--i~t). In this case the equation for the amplitude of the displace- 
ment takes the form 

Aw(x ,  y) + (p~2/~t)w(x, y) = O, x = X /a ,  Y / a  = y.  ( ] .  I) 
Suppose shear stresses are prescribed on the surface of the medium 

e _ i z  t = / p  (y) e - ~ t ,  y ~ [b, c], ( I . 2 ) 0, x Tzx t (y) 
t O, g ~ [b~ el. 

The displacement and stress amplitudes at infinity approach zero. 

We first consider a subsidiary problem of steady-state antiplane oscillations of an 
elastic half-space containing a horizontal cylindrical cavity and acted upon by the harmonic 
load (].2) applied to the surface of the half-space, and the load 

am 
~ = ~-gTr = Z ( ~ ) ,  x = H - -  r c o s ~ ,  y = - -  r s i n ~ ,  H = h/a ( 1 . 3 )  

applied to the cylindrical cavity along the boundary r = ~ix -- H) 2 + y~ = I. Here r and 
are cylindrical coordinates with the origin at the center of the cavity (r = R/~; �9 = tan -I 
[y/(x -- H)]). 

We seek the amplitude of the displacement vector in the form 

w (x,  y) = w 1 (x,  y) @ W~ (x,  y).  ( 1 . 4 ) 

Here w~(x, y) is the solution of the problem of antiplane oscillations of a uniform elastic 
half-space with a density 0 and a shear modulus ~ under the action of a harmonic sbear load 
�9 zx = X(y) exp(--i~t) (generally unknown) distributed over its surface; w2(x, y) = w2(r, ~) 
is the solution of the problem of antiplane oscillations of an infinite elastic space with a 
cylindrical cavity of radius a whose surface is loaded with the stress ~rzlr=~ = Y(~) exp 
(--i~t) : 
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= - -  '~, o ~ ~u~, ( 1 . 5 )  

2 g  
a w, (r, (P) ---- 2 ~  ~Y (~) ~ Am cos [m ((P -- "q)] drh 

0 m ~ O  

Am = H: ) (Or)l[ H:)-x (0)-  0 H:) (0)]. 

Here a, ~, 0 = poo2az/~; x = X/a; y = Y/a; r = R/a are dimensionless parameters; the H(~)(~) 

are Hankel functions of the first kind [2] ; the contour o passes below the positive branch 
point a = +0 and above the negative branch point ~ =--0; the rest of the contour coincides 
with the real axis [3]. 

Substituting (1.5) into (1.4) and satisfying the boundary conditions on w(x, y) (1.2), 
(1.3), we obtain the following system of integral equations for the unknown stresses X(y) 
and Y(~): 

Here 

x (y)  - 
0 m ~ o  

Y((P)-~ 2-~c;i~i [_== XO] ) C0S q)~- r @2J 3~~176176176176176 

(1 .6 )  

�9 I/ 
( HOcpl ~ (y) m9 

r (y, ~l) = l ~  cos [m (arctg (-- y) --  ~l)l - -  ~ r (Y) sin [m(arctg (-- y) - -  ~q)] h ,,; 

[ y  t 

= (0)  - -  (0)  (y)  = H 2  ) (0  = . 

To s o l v e  the  i n i t i a l  p r o b l e m  o f  the  e x c i t a t i o n  o f  a n t i p l a n e  o s c i l l a t i o n s  i n  a h a l f - s p a c e  
containing an elastic cylindrical inclusion we write an expression for the wave field in an 
infinite elastic cylinder having a density P l and a shear modulus ~I, and acted upon by the 
shear stress (1.3) distributed over the surface of the cylinder. The amplitude of the dis- 
placement of points of the elastic cylinder ws(r, ~0) is given by the relation 

2~ 
, ~ ~-% Ih (011-) Cos [k (~ - -  ~)] 

---s - o J Z ( ~ ) 2 ~  k ..... d~, (1 .7 )  
w 3 (r, (p) = 2n0~1 _ k=o Ik_ I (01) -- ~ / k  (01) 

where O~ = 01~2a2/~I, and Ik(~) is a modified Bessel function [2]. 

The rigid bonding of the cylinder to the elastic half-space ensures the continuity of 
displacements and stresses at the media interface. The condition Of continuity of stresses 
is satisfied automatically by the specification of equal stresses at the interface outside 
and inside the inclusion. By satisfying the continuity condition for the displacements 

w ( z ,  y ) =  w~(x,  y ) +  w.,(r, (p)l~=x = w~(r,  (p )~=~ ,  ( 1 . 8 )  

x =  H - - r e o s t p ,  y = - - r s i n t p ,  

we obtain an equation which together with system (1.6) permits the determination of the func- 
tions X(y), Y(~P), and Z((P). It should be noted that for h > a the operators in (1.6) and 
(1.8) are completely continuous in the space of summable functions. 

After system (1.6), (1.8) has been solved, the determination of the wave field reduces 
to the calculation of the expressions for the amplitude functions (1.4), (1.5) outside the 
elastic inclusion, and (1.7) inside it. 

2. We investigate the system of equations (1.6), (1.8). When h and a are commensurate 
(h > cz) this system can be reduced to a quasiregular infinite system of linear algebraic 
equations which can be solved efficiently by numerical methods. When h >> cz (H >> I , ~ << I), 
the system can be solved by asymptotic methods, which permits the determination of an analytic 
solution of the required accuracy. 
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Let us consider the case when the load (1.2) on the surface of the half-space is uni- 
formly distributed over a strip, i.e. p(y) = po = const. In this case we obtain the first 
approximation of the solution of the system in the form 

Xo(Y) = t(//), Yo(~P) ---- Zo(q~) ---- 0, (2 .1 )  

x(v) - Xo(v) + ~x~(v) + .... Y e )  = Y0(~) + V ~ r ~ ( ~ ) +  .... z e )  = z0(~) + g~z~(~)  ~' ... 

The s u b s t i t u t i o n  o f  Xo(y) from (2. 1) i n t o  the  second  o f  Eqs.  (1 .6 )  g ives  
-7- 

Y (q~) = Z(q~) - -  / ) - ~ g  % (~) / -  O(e), (2 .2 )  

where 

o e 
(r  = - - p o e  ~ [a~ cos r + a~ sin r ax ~ (~ + ~)~/~ -~ (t + ~)~/i;  a~ = ( i  + ~)~/~ (t + ~")~/~ " 

A f t e r  s u b s t i t u t i n g  Xo(y) i n t o  the  t h i r d  o f  Eqs.  (1 .8 )  and e v a l u a t i n g  the  i n t e g r a l s  
a p p e a r i n g  i n  the e x p r e s s i o n  by the method o f  s t e e p e s t  d e s c e n t s  [4 ] ,  we o b t a i n  

[r215 {z~ ~ cos k,p + ZI? si~ k~vl 4~ {y;  ~ ~os ~ + r ?  ~ sin ~,v/] = ~ eop0 + 0 (~), ~ = 0~/(%~:), 

where 

(2.3) 

2O5 

o dV77~I 
P o = [ ( ( t + b = ) " %  ~ j lb - - ( ( ' l  ~- o,,,'a '2-V[-+~Q/] - i - ~ - s  ~ . ,  c ' ) e  Ucje ; 

,h = T.~ ~ 01) cos k~ld~l; ~h s) = =?~ $ (1l) sil~ krld% 
0 0 

By e xpa nd ing  (2 .2 )  i n  F o u r i e r  s e r i e s  and s o l v i n g  i t  s i m u l t a n e o u s l y  w i t h  ( 2 . 3 ) ,  we o b t a i n  

F - ~ - [  Po A,(Blc~ i-~] 
Z ( q ~ ) = P ~  - -  x G ~  @ (zG/--Ai) e*J+O@), (2 .4 )  

Y (q~) = Po ~ Ao (• -- A~) e ~ + 0 e ) ,  

O ~ :trt 0 ~  I ,-:;q-~.. m 

ep o 
X(v)=t(vl+'a-YG[(~+t)~,'~(~ao--Ao) + z(,2 + @~  (~.G1-- A0 j '  

I f  a m o r e  a c c u r a t e  e v a l u a t i o n  of X(y) ,  Y(<p), and Z((P) i s  r e q u i r e d ,  the p r o c e s s  i n d i c a t e d  
can be c o n t i n u e d  f u r t h e r  by t a k i n g  acco u n t  of  h i g h e r  o r d e r  terms i n  r i n  the e x p a n s i o n  o f  
em(Y, n) �9 

It should be noted that in the first approximation (2.1) we have the solution of the 
problem for a uniform elastic half-space. The effect of the perturbation introduced_by the 
elastic inclusion is determined by the next term in the expansion, and is of order /r 

To construct expressions for the wave field in the medium we substitute the values ob- 
[ tained for X(y), Y(q~) and Z(q0) from (2.4) into the expressions for w~(x, y), wi~r, q~) (1.4), 

(1.5) and w3(r, q~) (1.7) and evaluate the integrals appearing in them by asymptotic methods 
[4]. 

Since the wave field excited by a source outside the elastic inclusion is the most in- 
formative, we present first an algorithm for calculating the functions w~(x, y) and wi(r, qo). 
Substituting the approximate value of X(y) from (2.4) into the first of Eqs. (1.5) and eva- 
luating the integrals which enter by the method of steepest descents [4], we obtain 

wl (x, y) = "V- r z a o  t y + ~ 

I:'2 + @ + ~F']~/~ e ~ ~  + 0 (~), c, b N t [  (c, b > h'). 
v + c  J 

Similarly we have for w z ( r ,  ~p) 

1/-7-.[  2~,,Hi,~'<0~> ~c,zT/0r/(B, co~q-'-~,~,,q) ~ ]  
w.,(r, t p ) = - - ~  r ~  ~'~ ~ T a " -  . . . .  , _ _ _ _ _ _ - _ 2 _ _ _ _  t' ~ + 0 @ ) .  s  

J 



The amplitude w(x, y) of the displacement of the medium outside the elastic inclusion is 
found from (1.4) by using (2.5)and (2.6). 

Since the only assumptions made in deriving (2.5) and (2.6) were that s is small and c, 
b >> I, these equations are valid over the whole region, including the boundary. In (2.5) only 
the case y = const and x -~ oo must be excluded. In this case the expression for w~ (x, y) has 
a somewhat different form. If it is required to find the distribution of the wave field in- 
side the elastic inclusion, we obtain by proceeding as above 

[ 2P0/r0 (01 r) _ A l I 1  (01r)("1 COS ~ -~ B 2 sin Cp) '~]  
w3(s,q~)- 20~ ap~ ~2~eL,o(O~)(zao--Ao) (uS _A~)(io(0~)_ _~ i~(0~)] e'j +O(s). 

Thus, our proposed method permits the derivation of expressions for the wave field over 
practically the whole region under investigation which are rather simple to analyze. It 
should also be noted that this method can be employed without change to treat a similar prob- 
lem in two or three dimensions. In doing this only the awkwardness of the calculations is 
substantially increased. Thus, in treating a similar problem in two dimensions it is neces- 
sary in the first stage to solve a system of six rather than three integral equations. How- 
ever, all the basic properties of the elements of the system treated in the present article 
are retained. In calculating wave fields the integrals and sums which arise are of the same 
type as in the above treatment. 
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DETERMINATION OF STRESSES IN AN INFINITE PLATE WITH 

BROKEN OR BRANCHING CRACK 

P. N. Osiv and M. P. Savruk UDC 539.375 

In numerical solution of the singular integral equations which arise in two-dimensional 
elasticity theory problems for bodies with internally smooth curvilinear sections, the 
mechanical quadrature method, based on Gauss--Chebyshev quadrature expressions, is employed. 
Considering a piecewise-smooth crack as a limiting case of a system of smooth sections [I-3], 
having common points, we arrive at a system of singular integral equations with generalized 
singular integrands, containing fixed singularities together with the Cauchy integrand. 
Such equations can also be solved by the mechanical quadrature method, although more complex 
quadrature expressions are required (for example, Gauss--Jacoby expressions), which consider 
the singularity of the solution at the nodes of the section contour. Below, using the exam- 
ple of a broken, branching crack in an infinite plate, we present a simplified technique for 
numerical solution of the integral equations for piecewise-smooth sections using Gauss-- 
Chebyshev expressions. The solution singularity at the angular point or branching point is 
considered inexactly, so that such a solution is only effective when it is not necessary to 
determine the stressed state in the vicinity of such points. In particular, the proposed 
solution technique will be used to determine the stress intensity coefficients at the peaks 
of a piecewise-smooth crack. 

I. Basic Assumptions~ Within an infinite plane having a related Cartesian coordinate 
system xOy, let there be a system of N + ] rectilinear sections Ln, located along segments 
]Xnl ~ ~n of the local coordinate axes OnX n (n = 0, l .... , N). In the system xOy the origin 
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